In this paper, two new wavelet bases are developed for discretising the angular term of the first-order Boltzmann transport equation. The wavelets proposed are based on Sweldens second generation wavelets [Sweldens, W., 1993. The lifting scheme: a construction of second generation wavelets. SIAM J. Math. 1, 54], which are constructed through the lifting procedure [Sweldens, W., 1995. The lifting scheme: a new philosophy in biorthogonal wavelet construction. Wavelet Applications in Signal and Image Processing III]. In this paper, the wavelets are built on an octahedral domain, Fig. 2, and the angular flux approximation takes the form of finite element linear and quadratic representations. Full details of the meshing over the octahedron and derivation of the wavelet functions are given. The wavelets discussed are similar to the wavelets developed in Buchan [Buchan, A., 2003 c. Angular discretisation of the first order Boltzmann transport equation. Part 2: linear spherical wavelets. Technical Report, Imperial College, London, Dep. Earth Sci. Eng.] and [Buchan, A., 2003b. Angular discretisation of the first order Boltzmann transport equation. Part 3: quadratic spherical wavelets. Technical Report, Imperial College, London, Dep. Earth Sci. Eng.], in this paper the bases use a new fundamental amendment for mitigating the inaccuracies observed with the earlier bases. The performance of the new angular discretisation techniques are demonstrated using 2 one-dimensional and 4 two-dimensional test problems. These problems demonstrate the accuracy and susceptibility to ray effects of the proposed methods. Comparisons of all calculations are made with the conventional S N and P N approximations. Benchmark solutions are provided by the established code EVENT.
Read full abstract