AbstractWhile the wake of a circular cylinder and, to a lesser extent, the normal flat plate have been studied in considerable detail, the wakes of elliptic cylinders have not received similar attention. However, the wakes from the first two bodies have considerably different characteristics, in terms of three-dimensional transition modes, and near- and far-wake structure. This paper focuses on elliptic cylinders, which span these two disparate cases. The Strouhal number and drag coefficient variations with Reynolds number are documented for the two-dimensional shedding regime. There are considerable differences from the standard circular cylinder curve. The different three-dimensional transition modes are also examined using Floquet stability analysis based on computed two-dimensional periodic base flows. As the cylinder aspect ratio (major to minor axis) is decreased, mode A is no longer unstable for aspect ratios below 0.25, as the wake deviates further from the standard Bénard–von Kármán state. For still smaller aspect ratios, another three-dimensional quasi-periodic mode becomes unstable, leading to a different transition scenario. Interestingly, for the 0.25 aspect ratio case, mode A restabilises above a Reynolds number of approximately 125, allowing the wake to return to a two-dimensional state, at least in the near wake. For the flat plate, three-dimensional simulations show that the shift in the Strouhal number from the two-dimensional value is gradual with Reynolds number, unlike the situation for the circular cylinder wake once mode A shedding develops. Dynamic mode decomposition is used to characterise the spatially evolving character of the wake as it undergoes transition from the primary Bénard–von Kármán-like near wake into a two-layered wake, through to a secondary Bénard–von Kármán-like wake further downstream, which in turn develops an even longer wavelength unsteadiness. It is also used to examine the differences in the two- and three-dimensional near-wake state, showing the increasing distortion of the two-dimensional rollers as the Reynolds number is increased.
Read full abstract