Marine benthic organisms, including stingrays, utilize sediment for self-burial, providing an effective strategy for concealment and protection against currents. This study investigates the effects of stingray flapping amplitude and count on self-burial performance using a two-dimensional numerical model, and two self-burial strategies are proposed. The first involves a single large-amplitude flap, achieving high sand transport efficiency but demanding higher transient power. The second uses multiple medium-amplitude flaps, results in a greater burial depth with lower peak power requirements. The analysis reveals that effective self-burial is dependent on raising an adequate quantity of sand and ensuring its deposition on the stingray body. Vortex dynamics play a crucial role, with appropriate vortex strength and sand volume needed for complete body coverage. Furthermore, this study underscores the potential of these findings to inform the design of bio-inspired marine robots capable of self-burial, offering novel insights into the mechanics underlying stingray self-burial and its broader implications for underwater technology development.
Read full abstract