Metallic materials, especially steel, underpin transportation technologies. High-manganese twinning induced plasticity (TWIP) austenitic steels exhibit exceptional strength and ductility from twins, low-energy microstructural defects that form during plastic loading. Their high-strength could help light-weighting vehicles, and hence cut carbon emissions. TWIP steels are however very sensitive to hydrogen embrittlement that causes dramatic losses of ductility and toughness leading to catastrophic failure of engineering parts. Here, we examine the atomic-scale chemistry and interaction of hydrogen with twin boundaries in a model TWIP steel by using isotope-labelled atom probe tomography, using tritium to avoid overlap with residual hydrogen. We reveal co-segregation of tritium and, unexpectedly, oxygen to coherent twin boundaries, and discuss their combined role in the embrittlement of these promising steels.
Read full abstract