This paper presents a high-throughput FFT processor for IEEE 802.15.3c (WPANs) standard. To meet the throughput requirement of 2.59 Giga-samples/s, radix-16 FFT algorithm is adopted and reformulated to an efficient form so that the required number of butterfly stages is reduced. Specifically, the radix-16 butterfly processing element consists of two cascaded parallel/pipelined radix-4 butterfly units. It facilitates low-complexity realization of radix-16 butterfly operation and high operation speed due to its optimized pipelined structure. Besides, a new three-stage multiplier for twiddle factor multiplication is also proposed, which has lower area and power consumption than conventional complex multipliers. Moreover, a conflict-free multibank memory addressing scheme is devised to support up to 16-way parallel and normal-order data input/output. Without needing to reorder the input/output data, this scheme helps a high-throughput design result. Equipped with those new performance-boosting techniques, overall the proposed radix-16 FFT processor is area-efficient with high data processing rate and hardware utilization efficiency. The EDA synthesis results show that whole FFT processor area is 0.93 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , and the power consumption is 42 mW with 90 nm process. The SQNR performance is 57 dB with 12-bit wordlength implementation.
Read full abstract