This is a review of what is known about fluctuations and anomalous transport processes in tokamaks. It mostly considers experimental results obtained after, and not included in, the reviews of Liewer [Nucl. Fusion 25, 543 (1985)], Robinson [in Turbulence and Anomalous Transport in Magnetized Plasmas (Ecole Polytechnique, Palaiseau, France, 1986), p. 21], and Surko [in Turbulence and Anomalous Transport in Magnetized Plasmas (Ecole Polytechnique, Palaiseau, France, 1986), p. 93]. Therefore much of the pioneering work in the field is not covered. Emphasis is placed on results where comparisons between fluctuations and transport properties have been attempted, particularly from the tokamak TEXT [Nucl. Technol./Fusion 1, 479 (1981)]. A brief comparison of experimentally measured total fluxes with the predictions of neoclassical theory demonstrates that transport is often anomalous; fluctuations are thought to be the cause. The measurements necessary to determine any such fluctuation-driven fluxes are described. The diagnostics used to measure these quantities, together with some of the statistical techniques employed to analyze the data, are outlined. In the plasma edge detailed measurements of the quantities required to directly determine the fluctuation-driven fluxes are available. The total and fluctuation-driven fluxes are compared: the result emphasizes the importance of edge turbulence. No model adequately describes all the measured properties. In the confinement region experimental observations are presently restricted to measurements of density and potential fluctuations and their correlations. Various distinct turbulence features that have been observed are described, and their characteristics compared with the predictions of various models. Correlations observed between these fluctuations and plasma transport properties are summarized. A separate section on magnetic fluctuations shows there is very little information available inside the plasma, generally prohibiting quantified comparisons between fluctuation levels and transport. Both coherent and turbulent magnetic fluctuations are addressed, and the differences between low and high plasma pressure (low and high beta) are noted. The contributions of alternate confinement devices, such as stellarators and reversed field pinches, to understanding tokamak anomalous transport are discussed. Finally, future directions are proposed.
Read full abstract