This study examines integrating large-scale photovoltaic (PV) systems into the power grid to achieve a 30% PV share, addressing operational and economic challenges such as backup generation, storage, and grid stability. Applying an electricity dispatch model to the test case of Israel, it highlights significant impacts on fuel consumption, cost, and carbon emissions. Key findings include an 8% drop in the capacity factor of natural gas combined cycle (NGCC) plants, leading to increased starts, stops, and higher fuel consumption. Annual power generation will grow from 81 to 104 TWh, with PV generation increasing from 8.1 to 31.1 TWh. Open cycle gas turbine (OCGT) output will grow from 2.4 to 10.2 TWh, increasing OCGT’s market share from 3% to 10%. NGCC operations’ intermittency will double annual starts from 3721 to 7793, causing a 1.1% efficiency drop and a 2% rise in natural gas consumption. 3.45 GWh of Li-ion battery capacity will be needed. The LCoE is expected to increase from 6.6 to 7.0 c$/kWh without a carbon tax and from 8.7 to 8.8 c$/kWh with a $40/t carbon tax. Annual emissions will rise from 41.8 to 46.5 Mt. This study provides insights for sunny Mediterranean countries with similar renewable energy goals.
Read full abstract