Abstract
This paper proposes a chemical looping hydrogen generation-solid oxide fuel cell combined cooling, heating, and power system that utilizes compressed air energy storage and liquefied natural gas, aiming to address the issues of instability in renewable energy power generation and waste of liquefied natural gas cold energy. The scheme achieves CO2 capture and efficient power generation while also addressing grid fluctuations and the utilization of waste cold energy. The compressed air energy storage system is employed to supply air centrally, eliminating the power consumption of traditional air compressors while improving discharging efficiency. Aspen Plus software and embedded Fortran are used for system simulation. The system is comprehensively evaluated through energy analysis, exergy analysis, and sensitivity analysis. The results indicate that the discharging efficiency, energy round-trip efficiency, and round-trip electrical efficiency are 87.56%, 81.57%, and 67.82%, respectively. The purity of CO2 capture is 99.72%. Sensitivity analysis indicates that the outlet pressure of the air storage tank and fuel flow are the main influencing parameters for system performance. Increasing the fuel flow can effectively enhance system power output, but efficiency will decrease. The outlet pressure primarily influences the power output of the gas turbine and discharging time. Overall, this system provides theoretical guidance and new ideas for efficient energy utilization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have