Purpose The purpose of the study is to find the effect of convergent and divergent section length on the exit flow characteristics. Converging-diverging (CD) nozzle design can be difficult because of the necessity for precise geometry and an understanding of compressible fluid flow dynamics. To obtain the ideal supersonic speeds, it is challenging to make sure that the flow chokes at the throat, where the Mach number approaches one and then expands appropriately in the diverging region. The design needs to take into consideration things like the relationship between the area and Mach number, the impact of various pressure ratios and the flow’s isentropic interactions. Design/methodology/approach An ideal thrust production is achieved through the effective acceleration of exhaust gases through proper nozzle design. This paper numerically investigates impact of convergent, divergent length and nozzle pressure ratio on the exit Mach Number of CD nozzle supersonic jet. Exit Mach Number 1.6 convergent-divergent nozzle was used. In total, five cases were taken as the length of the both the convergent-divergent sections were modified with 50% of increment and decrement in its base length. At four different NPR, the analysis was carried out in over-expanded, correctly expanded and under-expanded conditions. The NPR used were 2, 3.2, 4 and 5. Findings From the results, it is found that the convergent length linearly affects the exit Mach number, while the divergent length variation is not in order. Both the decreased and increased divergent length reduce the supersonic jet exit Mach number. The subsonic region is not majorly affected by the length. There is no rapid change in the flow properties whether the length is reduced or increased. Maximum of 2% to 3% variation is only noticed. On the contrary, a small change in supersonic region or divergent section makes major modification in the flow. Originality/value To achieve the desired Mach number, not only the area of the nozzle but also the length affects it. In terms of divergent angle and area ratio, only most of the studies on nozzle have been focused. This study aims to find the impact of convergent length and divergent length on the exit Mach number. This could be used in a wide range of applications, including laser cutting, thermal spraying, gas turbines for power generation, rocket and jet engines, supersonic wind tunnels and turbo chargers in automotive engineering, because of their capacity to accelerate fluids to supersonic speeds.
Read full abstract