A distributed-power-generating source (DPGS) is intended to locally supply the increased power demand at a load bus. When applied in small amounts, a DPGS offers many technical and economic benefits. However, with large DPGS penetrations, the stability of the transmission system becomes a significant issue. This paper investigates the stability of a transmission system equipped with a DPGS at load centres supplying power to both a constant power (CP) and induction motor (IM) load. The DPGSs considered in the present study are microturbine and diesel turbine power generators (MTGS and DTGS), both interfaced with synchronous generators. The influence of an IM load supplied by the DPGS on small-signal stability is studied by a critical damping ratio analysis. On the other hand, time-domain indicators of the transient response following a short circuit are employed in the analysis. Further, a variance analysis test (VAT) is performed to determine the contribution of IM and CP loads on the system stability. The study revealed that large penetration levels of IM loads significantly affect the stability and depend on the kind of DPGS technology used.
Read full abstract