A divertor concept for DEMO has been investigated at Karlsruhe Institute of Technology (KIT) which has to withstand a heat flux of 10MW/m2. The design utilizes small finger module composed of a small tungsten tile brazed on a thimble made from tungsten alloy. The divertor finger is cooled by helium jet impingement at 10MPa and 600°C. The subject of this paper is technological studies on machining and braze joining the divertor components. Goal of this task, which is considered an important R&D issue, is to find out appropriate manufacturing methods to ensure high functionality and high reliability of the divertor as well as to meet the economic aspect. One of the major requirements for manufacturing is micro-crack-free surface of tungsten parts, since crack propagations in tungsten were observed in the previous high-heat-flux tests at Efremov. Different manufacturing methods and the corresponding results are discussed in the following report.
Read full abstract