Patients with lung adenocarcinoma (LUAD) generally have poor prognosis. Abnormal cellular energy metabolism is a hallmark of LUAD. Glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) is a member of the γ-glutamylcyclotransferase family and an unfolded protein response pathway regulatory gene. Its biological function and molecular regulatory mechanism, especially regarding energy metabolism underlying LUAD, remain unclear. By utilizing tissue microarray and data from The Cancer Genome Atlas and Gene Expression Omnibus, we found that CHAC1 expression was markedly higher in LUAD tissues than in non-tumor tissues, and was positively correlated with poor prognosis. Phenotypically, CHAC1 overexpression enhanced the proliferation, migration, invasion, tumor sphere formation, and glycolysis ability of LUAD cells, resulting in tumor growth both in vitro and in vivo. Mechanistically, through a shotgun mass spectrometry-based proteomic approach and high-throughput RNA sequencing, we found that CHAC1 acted as a bridge connecting UBA2 and PKM2, enhancing the SUMOylation of PKM2. The SUMOylated PKM2 then transferred from the cytoplasm to the nucleus, activating the expression of glycolysis-related genes and enhancing the Warburg effect. Lastly, E2F Transcription Factor 1 potently activated CHAC1 transcription by directly binding to the CHAC1 promoter in LUAD cells. The results of this study implied that CHAC1 regulates energy metabolism and promotes glycolysis in LUAD progression.