Abstract

Alternative splicing products of AIMP2 and AIMP2-DX2 (DX2) have been reported to be associated with human lung cancer. In fact, DX2 expression is elevated in human lung cancers and DX2 transgenic mice also develop lung cancer, in particular, Small Cell Lung Cancer (SCLC). However, the mechanism by which DX2 is induced during cancer progression has not been clearly elucidated. Here, we show that DX2 is induced by nicotine, the main component of smoking-related chemicals, which can stabilize the human epidermal growth factor receptor 2 (HER2) protein and transcriptionally increase sonic hedgehog (Shh). Indeed, nicotine showed tumorigenicity via DX2 by promoting spheroid formation and in vivo lung and kidney cancer progression. Moreover, the elimination of DX2 using siRNA or an optimized inhibitor (SNU-14) blocked the induction of HER2, Shh and completely suppressed tumor sphere formation in response to nicotine. These results indicate that DX2 is critical for lung cancer progression, and a specific DX2 inhibitor would be useful for the treatment of human cancers, including SCLC and Non-Small Cell Lung Cancer (NSCLC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.