A sensitive and isotopic interference-free analysis method for Sb was developed based on hydride generation-microwave plasma torch-mass spectrometry (HG-MPT-MS). Compared to the conventional ICP-MS, MPT coupled to an ion trap mass spectrometer enabled much “softer” ionization of Sb under ambient condition, which provided multi-detection modes and various ion forms, such as Sb+, SbO+, SbO2−, SbO++H2O and so on. These ion formations can be easily regulated by tuning capillary voltage and tube lens voltage, which facilitated elimination of isotopic interference during analysis, for instance the interference of 123Te on 123Sb could be effectively excluded by optimizing parameters of capillary voltage and tube lens voltage. The potential application of HG-MPT-MS for Sb isotope ratio analysis was also demonstrated, which could be determined in different forms, e.g., 123Sb/121Sb or 123Sb16O/121Sb16O. The value of 123Sb/121Sb was determined to be 0.75110 ± 0.00038 (2σ, n > 50). In addition, the detection limit, linearity and spike recovery were also studied. Overall, HG-MPT-MS performed equally well on detection limit (0.05 μg/L) with ICP-MS or HG-AFS. The linearity (R2 = 0.998) was checked in the concentration range of 10–500 μg/L. Spike recovery were evaluated with two soil samples, and the obtained spike recovery ranged 90–100 %. In general, HG-MPT-MS was expected to be a versatile tool for study the biochemical or geochemical behaviors of Sb and other hydride forming elements under ambient condition in a much simpler and more efficient way.