Abstract

Optical projection tomography (OPT) is a three-dimensional (3D) fluorescence imaging technique, in which projection images are acquired for varying orientations of a sample using a large depth of field. OPT is typically applied to a millimeter-sized specimen, because the rotation of a microscopic specimen is challenging and not compatible with live cell imaging. In this Letter, we demonstrate fluorescence optical tomography of a microscopic specimen by laterally translating the tube lens of a wide-field optical microscope, which allows for high-resolution OPT without rotating the sample. The cost is the reduction of the field of view to about halfway along the direction of the tube lens translation. Using bovine pulmonary artery endothelial cells and 0.1 µm beads, we compare the 3D imaging performance of the proposed method with that of the conventional objective-focus scan method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call