The problem of true random number generators (TRNGs) traces back to von Neumann’s 1951 work that aims to simulate an unbiased coin by using a biased coin with unknown probability. The core component in a TRNG is the corrector which is a post-processing function used to reduce or eliminate statistical weaknesses of physical random number generators. Note that an ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-resilient function is an ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-corrector. Hence, a natural question is how to construct an ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )- corrector which is not ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-resilient? In this paper, a framework concerning the construction of nonlinear ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-correctors with algebraic degree <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</i> +1 is proposed based on an equidistant linear code. We show that the derived correctors are ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> - 1)-resilient, but not ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-resilient. Given the importance of equidistant linear codes, we discuss how to get such a code with relatively flexible length, and how to get a pair of disjoint equidistant linear codes. In addition, the parameters comparison with linear correctors is given. It is shown that our method achieves the same correction order compared to the optimal linear method. As far as we know, the ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-correctors we constructed also possess the best-known correction order compared with the known nonlinear ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n,m</i> ) resilient functions. The algebraic degrees and nonlinearities of the constructed correctors are also analyzed. Through a pair of disjoint equidistant linear codes, the nonlinearity of the nonlinear ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-correctors can be improved. The results show that our ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n, m, t</i> )-correctors also possess the best algebraic degree and nonlinearity for fixed ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n,m</i> ).