Feature point detection in inverse synthetic aperture radar (ISAR) images of space targets is the foundation for tasks such as analyzing space target motion intent and predicting on-orbit status. Traditional feature point detection methods perform poorly when confronted with the low texture and uneven brightness characteristics of ISAR images. Due to the nonlinear mapping capabilities, neural networks can effectively learn features from ISAR images of space targets, providing new ideas for feature point detection. However, the scarcity of labeled ISAR image data for space targets presents a challenge for research. To address the issue, this paper introduces a self-supervised feature point detection method (SFPD), which can accurately detect the positions of feature points in ISAR images of space targets without true feature point positions during the training process. Firstly, this paper simulates an ISAR primitive dataset and uses it to train the proposed basic feature point detection model. Subsequently, the basic feature point detection model and affine transformation are utilized to label pseudo-ground truth for ISAR images of space targets. Eventually, the labeled ISAR image dataset is used to train SFPD. Therefore, SFPD can be trained without requiring ground truth for the ISAR image dataset. The experiments demonstrate that SFPD has better performance in feature point detection and feature point matching than usual algorithms.
Read full abstract