Abstract

In an effort to gain insight into the origin of the effects of end groups on the cloud point temperature (Tcp) as a function of the polymer molar mass of thermoresponsive polymers with lower critical solution behavior in dilute aqueous solutions, we use the Flory-Huggins (FH) theory amended for end groups. The theory was applied to available experimental data sets of poly(N-isopropylacrylamide) (PNIPAM), poly(4-vinylbenzyl methoxytris(oxyethylene) ether) (PTEGSt), and poly(α-hydro-ω-(4-vinylbenzyl)tetrakis(oxyethylene) ether) (PHTrEGSt). The theory relates the variations in TcpM,ϕcp for different end groups to the effective FH χ parameter of the end groups and explains the qualitative notion that the influence of the end groups is related to the hydrophobicity/hydrophilicity of the end groups relative to that of the so called intrinsic TcpM,ϕcp response of a polymer without end groups. The limits to the applicability of the FH theory are established, and a set of possible theoretical improvements is considered. The ultimate scrutiny of the simple FH theory and suggested improved theories must await the measurement of truly thermodynamic cloud points; the available cloud points are merely estimations of the thermodynamic cloud point, for which the deviation to the true cloud point cannot be established with sufficient accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call