Nanofluidics is the study of fluids under nanoscale confinement, where small-scale effects dictate fluid physics and continuum assumptions are no longer fully valid. At this scale, because of large surface-area-to-volume ratios, the fluid interaction with boundaries becomes more pronounced, and both short-range steric/hydration forces and long-range van der Waals forces and electrostatic forces dictate fluid behavior. These forces lead to a spectrum of anomalous transport and thermodynamic phenomena such as ultrafast water flow, enhanced ion transport, extreme phase transition temperatures, and slow biomolecule diffusion, which have been the subject of extensive computational studies. Experimental quantification of these phenomena was also enabled by the advent of nanofluidic technology, which has transformed challenging nanoscale fluid measurements into facile optical and electrical recordings. Our groups' focus is to investigate nanoscale (2 to 103 nm) fluid behaviors in the context of fluid mechanics and thermodynamics through the development of novel nanofluidic tools, to examine the applicability of classical equations at the nanoscale, to identify the source of deviations, and to explore new physics emerging at this scale. In this Account, we summarize our recent findings regarding liquid transport, vaporization, and condensation of nanoscale-confined liquids. Our study of nanoscale water transport identified an additional resistance in hydrophilic nanochannels, attributed to the reduced cross-sectional area caused by the formation of an immobile hydration layer on the surfaces. In contrast, a reduction in flow resistance was discovered in graphene-coated hydrophobic nanochannels, due to water slippage on the graphene surface. In the context of vaporization, the kinetic-limited evaporation flux was measured and found to exceed the classical theoretical prediction by an order of magnitude in hydrophilic nanochannels/nanopores as a result of the thin film evaporation outside of the apertures. This factor was eliminated by modifying the hydrophobicity of the aperture's exterior surface, enabling the identification of the true kinetic limits inside nanoconfinements and a crucial confinement-dependent evaporation coefficient. The transport-limited evaporation dynamics was also quantified, where experimental results confirmed the parallel diffusion-convection resistance model in both single nanoconduits and nanoporous systems at high accuracy. Furthermore, we have extended our studies to different aspects of condensation in nanoscale-confined spaces. The initiation of condensation for a single-component hydrocarbon was observed to follow the Kelvin equation, whereas for hydrocarbon mixtures it deviated from classical theory because of surface-selective adsorption, which has been corroborated by simulations. Moreover, the condensation dynamics deviates from the bulk and is governed by either vapor transport or liquid transport depending on the confinement scale. Overall, by using novel nanofluidic devices and measurement strategies, our work explores and further verifies the applicability of classical fluid mechanics and thermodynamic equations such as the Navier-Stokes, Kelvin, and Hertz-Knudsen equations at the nanoscale. The results not only deepen our understanding of the fundamental physical phenomena of nanoscale fluids but also have important implications for various industrial applications such as water desalination, oil extraction/recovery, and thermal management. Looking forward, we see tremendous opportunities for nanofluidic devices in probing and quantifying nanoscale fluid thermophysical properties and more broadly enabling nanoscale chemistry and materials science.
Read full abstract