Detailed kinetic studies of the reactions of haloacetic acids (HAAs) with Fe(0) were performed in longitudinally mixed batch reactors. The reactions of tribromoacetic acid (TBAA), bromodichloroacetic acid, and chlorodibromoacetic acid were mass transfer limited, with corrected mass transfer coefficients of 3.7-3.9 x 10(-4) m/s. The reactions of trichloroacetic acid (TCAA), dichloroacetic acid (DCAA), chloroacetic acid (CAA), and bromoacetic acid (BAA) were reaction limited. Bromochloroacetic acid (BCAA) and dibromoacetic acid (DBAA) were partially reaction limited. For the reaction limited species and partially reaction limited species, intra- and interspecies competition effects were observed. A Langmuir-Hinshelwood-Hougen-Watson kinetic model incorporating a mass transfer term was adopted to account for these effects. The lumped kinetic parameters for the HAAs ranged from 0.04 to 248 microM min(-1) for an iron loading of 0.3 g of Fe/125 mL and followed the trend DBAA > BCAA > TCAA > BAA > DCAA. The adsorption parameters ranged from 0.0007 to 0.0065 microM(-1). The effect of dissolved oxygen (DO) on the reaction of TBAA or BAA with Fe(0) was also investigated. No significant effect of DO on the reaction rate of TBAA, which is a mass transfer limited species, was observed. A lag phase, however, was observed for the reaction of BAA, which is a reaction limited species, until the DO was depleted. Simulations were performed to investigate the potential significance of the reactions of HAAs with Fe(0) in water distribution systems.
Read full abstract