Ni-based alloy submicron WS2/CaF2 composite coatings were successfully produced through high velocity oxy-fuel (HVOF) spraying process. Microstructure characterization and morphology analysis on coatings were conducted using scanning electron microscopy and X-ray diffractometry. Tribological properties of coatings were carried out using a pin-on-ring tribometer at room temperature and 500°C, respectively. Results showed that WS2 in particles did not entirely decomposed during spraying process, submicron WS2 and CaF2 were uniformly distributed throughout the coating. Which lead a dense coating and a lower friction coefficient and better wear resistance. In ambient temperature, WS2 in coatings played a main role of lubrication, friction coefficient of coatings was in the rage of 0.25~0.35. But with the increasing of temperature, WS2 failed to provide solid lubricating films for pyrolysis, and CaF2 did not fully transfer from brittleness to plasticity, restrained solid lubricating film forming, friction coefficient reached to 0.45. Furthermore, average adhesive strength between coating/substrate was above 30MPa, which had positive affect on wear resistance of coatings.
Read full abstract