Detection of blood-borne pathogenic viruses is essential for blood transfusion, and has great significance for epidemiology, as well as clinical practices. Common blood-borne viruses causing infectious diseases include Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human immunodeficiency virus (HIV) and Treponema pallidum (TP). Therefore, multiplex detection of these viruses is more in the line with the needs of clinical testing. Although real-time PCR-based multiplex nucleic acid testing (NAT) was developed for pathogen detection, however, the requirement of multichannel realtime PCR machine increases the instrumental cost and is not suitable for use in resource-limited areas. In this study, we proposed a multiplex and colorimetric assay for detecting viral nucleic acids in blood by using serial invasive reaction assisted gold nanoparticle (AuNPs) probes assembling to identify multiplex PCR amplicons. As low as 2 copies per reaction of HIV and TP targets, and 20 copies per reaction of HBV and HCV targets can be detected. The results can be observed by naked eyes; thus, just a standard PCR machine is required. In addition, the hairpin probe and the AuNPs for signal read out are universal for all the targets, reducing the detection cost. About 20 DNA samples remaining after clinical HBV testing were successfully detected, and the results were consistent with that of commercially available real-time PCR based kit, indicating that this method has a potential for clinical applications.
Read full abstract