The second-generation Modern-ERA Retrospective analysis for Research and Applications (MERRA-2) land surface temperature (LST) dataset has been widely used for permafrost mapping in specific areas; however, its accuracy and application need to be evaluated over China. In this study, the MERRA-2 LST was evaluated against meteorological observations and three other reanalysis datasets including the first-generation MERRA, Japanese 55-year Reanalysis (JRA-55), and European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim), using multiple statistical methods over the period from 1980 to 2018. The results revealed that the MERRA-2 LST generally exhibited cold bias compared to meteorological observations while performing better than the JRA55, ERA-Interim, and MERRA datasets in China, particularly in high-altitude permafrost regions. The comparison indicated that the time series trends for the MERRA-2 LST was consistent with that observed until 2000, and noticeably amplified cold bias, particularly for the period after 2005, was observed. Moreover, two correction methods were proposed and compared to reduce the error range for the MERRA-2 dataset, which was caused by the difference in elevation and land cover types. Calibrated results demonstrated that the linear regression method (Method1) between the elevation difference and mean bias error (MBE) for the LST performed well with root mean square error (RMSE) ranged from 2.15 to 5.97 °C to 1.09–2.53 °C. Moreover, in comparison with the MODIS LST dataset, the results showed that the adjusted MERRA-2 LST was in good agreement with smaller RMSEs against the observations. The surface frost number model was used for mapping the permafrost distribution over China based on the daily adjusted MERRA-2 LST dataset. According to the simulation results, the permafrost extent had a slightly continued degradation trend with a rate of 3–5% per decade over the past 39 years. The simulated permafrost area over China for the years 2010–2018 was approximately 1.63 × 106 km2, which accounts for 16.9% of mainland China. Thus, the adjusted MERRA-2 LST with high spatial–temporal consistency is the optimal choice to investigate permafrost distribution on a large scale.
Read full abstract