The effects of climate change are unparalleled in magnitude, ranging from changing weather patterns that endanger food production to increasing sea levels that increase the likelihood of catastrophic flooding. Therefore, determining the extent of such variations on regional and local scales is imperative. We used monthly precipitation data from 25 meteorological stations in northern Pakistan (NP) to document the observed changes in seasonal and annual precipitation. The station density in the NP is small and unevenly distributed; therefore, ERA-5 reanalysis data were used to supplement the observed dataset to assess the spatial trends in NP. The non-parametric Mann–Kendall (MK), Sen’s Slope estimator (SSE), and Sequential Mann–Kendall (SQMK) tests were performed to assess the trends. In addition, the wavelet analysis technique was used to determine the association of precipitation with various oceanic indices from 1960 to 2016. Results indicate that maximum precipitation was shown in the annual and summer seasons. In NP, annual, winter, spring, and summer precipitation declined, while an increase in autumn was observed at a rate of 0.43 mm/decade between 1989 and 2016. The spatial trends for observed and ERA-5 reanalysis datasets were almost similar in winter, spring, and autumn; however, some disagreement was observed in both datasets in the summer and annual precipitation trends in NP during 1960–2016. Between 1989 and 2016, summer and annual precipitation increased significantly in Region III. However, seasonal and annual precipitation decreased in NP between 1960 and 2016. Moreover, there were no prominent trends in annual precipitation until the mid-1980s, but an apparent increase from 1985 onwards. Annual precipitation increased in all elevations except at the 500–1000 m zone. The ENSO (El Niño–Southern Oscillation) shared notable interannual coherences among all indices above 16–64 months. Inter-decadal coherence with the ENSO, AO (Arctic Oscillation), and PDO (Pacific Decadal Oscillation) in NP for 128 months and above. Generally, AO, AMO (Atlantic Multidecadal Oscillation), and NAO (North Atlantic Oscillation) exhibited less coherence with precipitation in NP. The regression of seasonal and annual precipitation revealed that winter and spring precipitation levels had higher linear regression with the AO and ENSO, respectively, while both the AO and ENSO also dominated at the annual scale. Similarly, the IOD and PDO indices had a higher influence in summer precipitation. The findings may help water resource managers and climate researchers develop a contingency plan for better water resource management policies in the face of changing climate change in Pakistan, particularly in NP.
Read full abstract