Native interactions are crucial for folding, and non-native interactions appear to be critical for efficiently knotting proteins. Therefore, it is important to understand both their roles in the folding of knotted proteins. It has been proposed that non-native interactions drive the correct order of contact formation, which is essential to avoid backtracking and efficiently self-tie. In this study, we ask if non-native interactions are strictly necessary to tangle a protein or if the correct order of contact formation can be assured by a specific set of native, but otherwise heterogeneous (i.e., having distinct energies), interactions. In order to address this problem, we conducted extensive Monte Carlo simulations of lattice models of protein-like sequences designed to fold into a preselected knotted conformation embedding a trefoil knot. We were able to identify a specific set of heterogeneous native interactions that drives efficient knotting and is able to fold the protein when combined with the remaining native interactions modeled as homogeneous. This specific set of heterogeneous native interactions is strictly enough to efficiently self-tie. A distinctive feature of these native interactions is that they do not backtrack because their energies ensure the correct order of contact formation. Furthermore, they stabilize a knotted intermediate state, which is en route to the native structure. Our results thus show that-at least in the context of the adopted model-non-native interactions are not necessary to knot a protein. However, when they are taken into account in protein energetics, it is possible to find specific, nonlocal non-native interactions that operate as a scaffold that assists the knotting step.