Abstract
It is shown that the representation theory of some finitely presented groups thanks to their SL2(C) character variety is related to algebraic surfaces. We make use of the Enriques–Kodaira classification of algebraic surfaces and related topological tools to make such surfaces explicit. We study the connection of SL2(C) character varieties to topological quantum computing (TQC) as an alternative to the concept of anyons. The Hopf link H, whose character variety is a Del Pezzo surface fH (the trace of the commutator), is the kernel of our view of TQC. Qutrit and two-qubit magic state computing, derived from the trefoil knot in our previous work, may be seen as TQC from the Hopf link. The character variety of some two-generator Bianchi groups, as well as that of the fundamental group for the singular fibers E˜6 and D˜4 contain fH. A surface birationally equivalent to a K3 surface is another compound of their character varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.