The relationship between dendrometric and meteorological parameters and resin production in Pinus pinaster plantations was studied using data from 90 trees collected between June and October. Resin production was measured every 15 days over a five-month period to explore how environmental factors influence resin production rates. The correlation between diameter at breast height (DBH) ranging from 20 cm to 49 cm and total and average resin production was examined, with the goal to optimize resin harvesting practices and to understand the ecological significance of resin in these plantations. The bi-monthly resin production was tested using the open wound tapping method over a five-month period beginning in June. Through regression models, significant seasonal variability in resin production was observed. Specifically, higher resin yields were recorded in June (354 g) and lower yields in October (53.5 g). The impact of DBH, tree height, basal area, and volume on resin yield were also assessed. Descriptive statistics, correlation, and regression analyses elucidated the relationships between tree metrics, meteorological factors, and resin production. This study contributes new insights into how tree characteristics influence resin production and how this relationship is modulated by seasonal changes. Such findings can inform sustainable forest management practices and improve resin harvesting methods.
Read full abstract