Mago nashi (MAGO) and Y14 proteins are highly conserved among eukaryotes. In this study, we identified two MAGO (designated as HbMAGO1 andHbMAGO2) and two Y14 (designated as HbY14aand HbY14b) genes in the rubber tree (Hevea brasiliensis) genome annotation. Multiple amino acid sequence alignments predicted that HbMAGO and HbY14 proteins are structurally similar to homologous proteins from other species. Tissue-specific expression profiles showed that HbMAGO and HbY14 genes were expressed in at least one of the tissues (bark, flower, latex, leaf and root) examined. HbMAGOs and HbY14s were predominately located in the nucleus and were found to interact in yeast two-hybrid analysis (YTH) and bimolecular fluorescence complementation (BiFC) assays. HbMAGOs and HbY14s showed the highest transcription in latex and were regulated by ethylene and jasmonate. Interaction between HbMAGO2 and gp91phox (a large subunit of nicotinamide adenine dinucleotide phosphate) was identified using YTH and BiFC assays. These findings suggested that HbMAGO may be involved in the aggregation of rubber particles in H. brasiliensis.
Read full abstract