The autotrophic iron-depended denitrification (AIDD), triggered by microelectrolysis, was established in the microelectrolysis-assistant up-flow anaerobic sludge blanket (MEA-UASB) with the purpose of low-strength coal gasification wastewater (LSCGW) treatment while control UASB operated in parallel. The results revealed that chemical oxygen demand (COD) removal efficiency and total nitrogen (TN) removal load at optimum current (2.5 A/m3) in MEA-UASB (83.2 ± 2.6% and 0.220 ± 0.010 kg N/m3·d) were 1.42-fold and 1.57-fold higher than those (58.5 ± 2.1% and 0.139 ± 0.011 kg N/m3·d) in UASB, verifying that AIDD and following dissimilatory iron reduction (DIR) process could offer the novel pathway to solve the electron donor-deficient and traditionally denitrification-infeasible problems. High-throughput 16S rRNA gene pyrosequencing shown that iron-oxidizing denitrifiers (Thiobacillus and Acidovorax species) and iron reducing bacteria (Geothrix and Ignavibacterium speices), acted as microbial iron cycle of contributors, were specially enriched at optimum operating condition. Additionally, the activities of microbial electron transfer chain, electron transporters (complex I, II, III and cytochrome c) and abundance of genes encoding important enzymes (narG, nirK/S, norB and nosZ) were remarkably promoted, suggesting that electron transport and consumption capacities were stimulated during denitrification process. This study could shed light on better understanding about microelectrolysis-triggered AIDD for treatment of refractory LSCGW and further widen its application potential in the future.
Read full abstract