Abstract

Anaerobic ammonium oxidation (Anammox) process has been successfully applied in the nitrogen removal from high-strength wastewaters. However, little information is available for its treatment of low-strength wastewaters. In this study, a Famine Anammox NItrogen Removal (FANIR) system was developed to investigate the effect of long-term substrate starvation at the low nitrogen concentration (the influent total nitrogen was set at ∼1 mg/L). The results showed that the response of FANIR system to the starvation stress took on two phases: the functional decline phase (0–54 day) and the functional stabilization phase (62–116 day). Over the two phases, the Nitrogen Removal Rate (NRR) of anammox reactor firstly dropped sharply; and then came to a constant level. The activity and settleability of Anammox Granular Sludge (AnGS) firstly deteriorated seriously, and then stayed in a stable range. The relative abundance of Anaerobic Ammonium Oxidation Bacteria (AnAOB) firstly decreased markedly, and then approached a steady state with the change of dominant genus from Candidatus Brocadia to Candidatus Kuenenia. The abundance of 16S rRNA gene and hzs gene of AnAOB and their transcription level firstly declined largely as well, and then became stable with the 16S rRNA gene, hzs gene, 16S rRNA and hzs-mRNA of AnAOB at 23.9%, 9.1%, 1.2% and 1.0% of the initial value, respectively. To our delight, the behavior of FANIR system in the functional stabilization phase was proved indeed consistent with the feature for AnAOB to enter the dormancy state. These findings are helpful to understand the physiology of AnAOB over the starvation stress and to promote the extension of anammox process to the treatment of low-strength wastewaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.