AbstractPlants are often exposed to fluctuating light from a few seconds to a few minutes due to cloud movements, mutual shading of leaves, and change in the angle of the sun. Slow stomatal response to fluctuating light leads to carbon loss, but the influence of planting density on light fluctuation frequency and on stomatal response and carbon gain has yet to be fully explored. To fill this knowledge gap, we investigated leaf morphology, stomatal anatomy and response rate, nitrogen content, biomass, and yield under low density, moderate density, and high density (HD) of cotton cultivar (Gossypium hirsutum L.). The results showed that higher planting density significantly increased light fluctuation frequency at the lower canopy. Stomatal size significantly decreased with the increase in planting density, while total stomatal density was consistent. Stomatal density had greater plasticity of determining maximum stomatal conductance than stomatal size. Faster stomatal response rate to fluctuating light under HD was attributed to smaller and denser stomata in the abaxial leaf side. Therefore, cotton under HD treatment had faster photosynthetic induction rate under light induction, resulting in greater carbon gain. We conclude that faster stomatal response rate achieved by the optimization of stomatal anatomy, especially the abaxial side, plays a crucial role in obtaining more carbon gain, biomass, and yield under HD cotton field. This finding indicates that selecting varieties with rapid stomatal response traits and planting at appropriate densities may optimize fluctuating light use to achieve higher yields.
Read full abstract