The present study aimed to explore the effect of melittin (MLT) on the growth of Schwann cells (SCs) in high glucose conditions and to understand the mechanisms involved. The goal was to provide a theoretical basis for using MLT in the treatment of diabetic peripheral neuropathy (DPN). The CCK‑8 assay was used to measure cell activity at different concentrations of glucose and MLT. Flow cytometry was employed to analyze the effect of MLT on cell cycle phases and apoptosis in SCs under high glucose conditions. To identify differentially expressed proteins, 4D label‑free quantitative proteomics with liquid chromatography‑mass spectrometry was used, followed by biological analysis to explore potential mechanisms. PCR, western blotting and immunofluorescence were conducted to confirm these mechanisms. Melittin (0.2 µg/ml) increased the proliferation of SCs in a high glucose environment. Flow cytometry showed that after MLT treatment, the proportion of cells in the G2/M+S phase increased and the combined ratio of early and late apoptosis decreased under high glucose conditions. Proteomics identified 1,784 proteins with significant changes in expression; 725 were upregulated, and 1,059 were downregulated. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the differentially expressed proteins were mainly involved in metabolic pathways and neurodegenerative disease pathways. PCR, western blotting and immunofluorescence confirmed the increase in Crabp2, Wnt3a, C‑Jun, CDK4, CyclinD1 and proliferating cell nuclear antigen. In high glucose conditions, MLT protects SCs from glucose toxicity by upregulating the Crabp2/Wnt/β‑catenin signaling pathway, potentially providing a new treatment for DPN.