Abstract

Diabetic peripheral neuropathy (DPN) is a significant and frequent complication of diabetes. Bu-Yang-Huan-Wu Decoction (BHD) is a classic traditional Chinese herbal prescription that is commonly used in modern clinical practice for the effective treatment of DPN, but the underlying mechanism is not yet clearly defined. The chemical constituents of BHD were characterized by UPLC-Q-Orbitrap HR MS/MS, and a total of 101 chemical components were identified, including 30 components absorbed into blood. An interaction network of "compound-target-disease" interactions was constructed based on the compounds detected absorbed in blood and their corresponding targets of diabetic neuropathy acquired from disease gene databases, and the possible biological targets and potential signalling pathways of BHD were predicted via network pharmacology analysis. Subsequently, methylglyoxal-induced (MGO-induced) Schwann cells (SCs) were used to identify the active ingredients in blood components of BHD and verify the molecular mechanisms of BHD. Through network topological analysis, 30 shared targets strongly implicated in the anti-DPN effects of BHD were identifed. Combined network pharmacology and in vitro cellular analysis, we found that the active ingredient of BHD may treat DPN by modulating the AGEs/RAGE pathway. This study provides valuable evidence for future mechanistic studies and potential therapeutic applications for patients with DPN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.