We present a general methodology for measuring the Hall effect on nanostructures with one-dimensional (1D) nanowire morphology. Relying only on typical e-beam lithography, the methodology developed herein utilizes an angled electrode evaporation technique so that the nanowire itself is a shadow mask and an intimate sidewall contact can be formed for the Hall electrodes. A six-contact electrode scheme with offset transverse contacts is utilized that allows monitoring of both the longitudinal resistivity and the Hall resistivity which is extracted from the raw voltage from the transverse electrodes using an antisymmetrization procedure. Our method does not require the use of a highly engineered lithographic process to produce directly opposing Hall electrodes with a very small gap. Hall effect measurements on semiconducting iron pyrite (FeS2) nanowire devices are validated by comparing to Hall effect measurements in the conventional Hall geometry using FeS2 plate devices. This Hall effect measurement is further extended to MnSi nanowires, and the distinct anomalous Hall effect signature is identified for the first time in chiral magnetic MnSi nanowires, a significant step toward identifying the topological Hall effect due to skyrmions in chiral magnetic nanowires.
Read full abstract