Accounting for the effects of disorder on the transport properties of electronic devices is indispensable for comparison with experiment. However, theoretical treatment of disorder presents essential difficulty because the disorder breaks the periodicity of the system. The coherent potential approximation (CPA) solves this problem by replacing the disordered medium with a periodic effective medium. However, calculating the electron current within CPA requires summing scattering diagrams to infinite order called vertex corrections. In this work we reformulate CPA for nonequilibrium electron transport. This approach, based on the nonequilibrium Green's function formalism, greatly simplifies the treatment of disordered transport by eliminating the vertex corrections.
Read full abstract