Microwave breakdown is crucial to the transmission of high-power microwave (HPM) devices, where a growing number of studies have analyzed the complex interactions between electromagnetic waves and the evolving plasma from theoretical and analytical perspectives. In this paper, we propose a finite-difference time-domain (FDTD) scheme to numerically solve Maxwell’s equation, coupled with a fluid plasma equation for simulating the plasma formation during HPM air breakdown. A subgridding method is adopted to obtain accurate results with lower computational resources. Moreover, the three-dimensional subgridding Maxwell–plasma algorithm is efficiently accelerated by utilizing heterogeneous computing technique based on graphics processing units (GPUs) and multiple central processing units (CPUs), which can be applied as an efficient method for the investigation of the HPM air breakdown phenomena.
Read full abstract