Abstract
Microwave breakdown is crucial to the transmission of high-power microwave (HPM) devices, where a growing number of studies have analyzed the complex interactions between electromagnetic waves and the evolving plasma from theoretical and analytical perspectives. In this paper, we propose a finite-difference time-domain (FDTD) scheme to numerically solve Maxwell’s equation, coupled with a fluid plasma equation for simulating the plasma formation during HPM air breakdown. A subgridding method is adopted to obtain accurate results with lower computational resources. Moreover, the three-dimensional subgridding Maxwell–plasma algorithm is efficiently accelerated by utilizing heterogeneous computing technique based on graphics processing units (GPUs) and multiple central processing units (CPUs), which can be applied as an efficient method for the investigation of the HPM air breakdown phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.