Abstract

One of the major limiting factors for the transmission of high power microwave (HPM) radiation is the interface between dielectric-vacuum or even more severely between dielectric-air if HPM is to be radiated into the atmosphere. Surface flashover phenomena which occur at these transitions severely limit the power levels which can be transmitted. It is of major technological importance to predict surface flashover events for a given window geometry, material and power level. When considering an aircraft based high power microwave platform, the effects on flashover formation due to variances in the operational environment corresponding to altitudes from sea level to 50,000 feet (760 to 90 Torr; 1 Torr=133.3 Pa) are of primary interest. The test setup is carefully designed to study the influence of each atmospheric variable without the influence of high field enhancement or electron injecting metallic electrodes. Experimental data of flashover delay times across different materials, such as polycarbonate, Teflonreg, and high density polyethylene as a function of background pressure and gas type, air, N2, argon are discussed. An empirical relationship between flashover field amplitude and delay time is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.