In this work, different backwash (BW) schemes were applied on identical hollow fiber (HF) membranes in a membrane bioreactor (MBR) treating municipal wastewater. The effect of BW duration (1 min, 3 min and 8 min) and water temperature (8 °C, 18 °C, 28 °C and 38 °C) on membrane fouling were investigated. Specifically, the transmembrane pressure (TMP) drop and the membrane permeability increase caused by the BW was investigated. Furthermore, the time required for the membrane to return to the state just before each BW experiment, was also examined. It was found that membranes presented better operating performance, as the BW temperature and the backwash duration were increased. Specifically, for 1 min backwash duration at the BW temperatures of 8 °C, 18 °C, 28 °C and 38 °C, TMP decreased by 7.1%, 8.7%, 11.2% and 14.2% respectively. For 8 min BW duration at 8 °C, 18 °C, 28 °C and 38 °C, TMP values decreased by 12%, 17.5%, 23.7% and 30.2% respectively. Increased BW water temperature and duration also improved the membrane permeability. Using higher BW water temperatures, more hours were required to return the membranes to the condition just before cleaning. The selected BW water temperatures did not adversely affect the permeate quality.