A critical feature of the robustness of the DNA replication machinery is the ability to complete its task in the presence of interfering DNA damage. A key mechanism responsible for this task is translesion replication (also termed translesion synthesis), carried out by specialized lesion bypass DNA polymerases of the Y superfamily. Here we show that in Escherichia coli, plasmids can be replicated across a segment of foreign non-DNA material, consisting of hydrocarbon chains of 3 or 12 methylene residues. This replication is carried out by DNA polymerase V and proceeds by at least two mechanisms: (i) Editing out the foreign insert, by polymerase "hopping" across it, which can be mediated by looping out of the insert, leading to its deletion, while preserving the DNA sequence. (ii) DNA synthesis through the insert, which occurs by incorporating one or two nucleotides opposite the hydrocarbon chain, yielding a net increase in the length of the DNA sequence. The remarkable ability of DNA polymerase V to insert nucleotides opposite a hydrocarbon chain shows that DNA synthesis can occur in a region of the template strand, which lacks all fundamental features of DNA, including its purine, pyrimidine, sugar, and phosphate moieties, and its hydrophilic and ionic nature. This bypass ability reflects a striking robustness of the translesion replication apparatus and is likely to contribute to its effectiveness in maintaining genome stability.