Abstract
Tolerance mechanisms are important in the ability of cells to cope with DNA damage. In E. coli, the two main damage tolerance mechanisms are recombinational repair (RR) and translesion replication (TLR). Here we show that RR effectively repairs gaps opposite DNA lesions. When both mechanisms are functional, RR predominates over TLR, being responsible for 86% of the repair events. This predominance of RR is determined by the high concentration of RecA present under SOS conditions, which causes a differential inhibition of TLR. Further inhibition of TLR is caused by the RecA-catalyzed strand exchange reaction of RR. This molecular hierarchy in the tolerance of DNA lesions ensures that the nonmutagenic RR predominates over the mutagenic TLR, thereby contributing to genetic stability.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have