To study the microscopic pore characteristics of marine–continental transitional shale, we studied the Daning–Jixian block of the Shanxi Formation using low-pressure CO2 adsorption (LP-CO2A) and low-temperature N2 adsorption (LT-N2A) methods in conjunction with field emission scanning electron microscopy (FE-SEM), geochemistry, and mineral composition analysis in order to obtain pore structure characteristic parameters. The fractal dimension of the pores was calculated using the Frankel–Halsey–Hill (FHH) model, and the study also discusses the factors that influence the pore structure. The study found that the marine–continental transitional phase shale of the Shanxi Formation has clay mineral contents ranging from 36.24% to 65.21%. The total organic carbon (TOC) contents range from 0.64% to 9.70%. Additionally, the organic matter maturity is high. The FE-SEM and gas adsorption experiments revealed that the transitional shale of the Shanxi Formation possesses a diverse range of pore types with relatively large pore sizes. The dominant pore types are organic and intragranular pores, with pore morphologies predominantly appearing as slit and parallel plate structures. According to the experimental data on gas adsorption, the total SSA values range from 11.126 to 47.220 m2/g. The total PV values range from 0.014 to 0.056 cm3/g. Micropores make up a greater proportion of the total SSA, whereas mesoporous pores make up a greater proportion of the total PV. The distribution of shale pore fractal dimensions D1 and D2 (D1 is 2.470 to 2.557; D2 is 2.531 to 2.755), obtained through LT-N2A data, is relatively concentrated. D1 and D2 have a positive correlation with the TOC content, clay mineral content, and BET-SSA, and D1 and D2 have a negative correlation with the quartz content. D2 is positively correlated with the Langmuir volume, showing that D2 can be used to evaluate the methane adsorption capacity.
Read full abstract