The paper considers the DIverse MultiPLEx (DIMPLE) network model, where all layers of the network have the same collection of nodes and are equipped with the Stochastic Block Models. In addition, all layers can be partitioned into groups with the same community structures, although the layers in the same group may have different matrices of block connection probabilities. To the best of our knowledge, the DIMPLE model, introduced in Pensky and Wang (2021), presents the most broad SBM-equipped binary multilayer network model on the same set of nodes and, thus, generalizes a multitude of papers that study more restrictive settings. Under the DIMPLE model, the main task is to identify the groups of layers with the same community structures since the matrices of block connection probabilities act as nuisance parameters under the DIMPLE paradigm. The main contribution of the paper is achieving the strongly consistent between-layer clustering by using Sparse Subspace Clustering (SSC), the well-developed technique in computer vision. In addition, SSC allows to handle much larger networks than spectral clustering, and is perfectly suitable for application of parallel computing. Moreover, our paper is the first one to obtain precision guarantees for SSC when it is applied to binary data.
Read full abstract