AbstractThe transient enhanced diffusion (TED) of high-dose implanted P is simulated taking into account Ostwald ripening of end-of-range (EOR) defects. First, we integrated a basic diffusion model based on the simulation of in-diffusion, where no implanted damages are involved. Second, from low-dose implantation, we developed a model for TED due to {311} self-interstitial (I) clusters involving Ostwald ripening and the dissolution of {311} clusters. Third, from medium-dose implantation, we showed that P-I clusters should be taken into account, and during the diffusion, the clusters are dissolved to emit self-interstitials that also contribute to TED. Finally, from high-dose implantation, EOR defects are modeled and we derived a formula to describe the time-dependence for Ostwald ripening of EOR defects, which is more significant at higher temperatures and longer annealing times. The simulation satisfactorily predicts the TED for annealing conditions, where the calculations overestimate the diffusion without taking Ostwald ripening into account.
Read full abstract