Abstract

AbstractMedium energy ion scattering (MEIS), operated at sub-nm depth resolution in the double alignment configuration, has been used to examine implant and damage depth profiles formed in Si(100) substrates irradiated with 2.5 keV As+ and 1 keV B+ ions. Samples were implanted at temperatures varying between 150°C, and 300°C to doses ranging from 3X1014 to 2X1016 cm-2. For the As implants the MEIS studies demonstrate the occurrence of effects such as a dopant accommodation linked to the growth in depth of the damage layer, dopant clustering, as well as damage and dopant movement upon annealing. Following epitaxial regrowth at 600°C, approximately half of the As was observed to be in substitutional sites, consistent with the reported formation of AsnV complexes (n≤4), while the remainder became segregated and became trapped within a narrow, 1.1 nm wide layer at the Si/oxide interfaceMEIS measurements of the B implants indicate the formation of two distinct damage regions each with a different dependence on implant dose, the importance of dynamic annealing for implants at room temperature and above, and a competing point defect trapping effect at the Si/oxide interface. B+ implantation at low temperature resulted in the formation of an amorphous layer due to the drastic reduction of dynamic annealing processes.Notably different dopant distributions were measured by SIMS in the samples implanted with As at different temperatures following rapid thermal annealing (RTA) up to 1100°C in an oxidising environment. Implant temperature dependent interactions between defects and dopants are reflected in the transient enhanced diffusion (TED) behaviour of As.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.