This paper presents the design and the performance of a wide tuning-range millimeter-wave (mm-wave) two-core class-C 60 GHz VCO in 40 nm CMOS process, which can be integrated into wireless communication transceivers and radar sensors. The proposed architecture consists of a two-core 30 GHz fundamental VCO, a gain-boosted frequency doubler and an adaptive bias configuration. The two-core fundamental VCO structure achieves frequency generation in the vicinity of 30 GHz, where each VCO core targets a different frequency band. The two bands have sufficient overlap to accommodate for corner variations providing a large continuous tuning range. The desired frequency band is selected by activating or deactivating the appropriate VCO core, resulting in a robust switchless structure. This approach enables a considerably broad tuning range without compromising phase noise performance. Furthermore, the proposed topology utilizes an adaptive bias mechanism for robust start-up. Initially, the selected VCO core begins oscillating in class-B mode, and subsequently it transitions into class-C operation to offer improved performance. From post-layout simulations, after frequency doubling, the low-band VCO covers frequencies from 50.25 to 60.40 GHz, while the high-band VCO core spans frequencies from 58.8 to 73 GHz, yielding an overall tuning range of 36.92%. Owing to the gain-boosting topology, output power exceeds −14.2 dBm across the whole bandwidth. Simulated phase noise remains better than −92.1 dBc/Hz at a 1 MHz offset for all bands. Additionally, the two VCO cores never operate simultaneously, aiding in power efficiency.
Read full abstract