Abstract

Wireless body area networks (WBANs), featuring wearable and implantable devices for collecting physiological data are increasingly critical in healthcare for enabling continuous remote monitoring, diagnostic improvements, and treatment optimization. Secure communication within WBANs is essential to protect sensitive health data from unauthorized access and manipulation. This paper introduces a novel secure digital (SD)- human body communication (HBC) Transceiver (TR) system, tailored for WBAN applications, that prioritizes security and offers significant enhancements in size, power efficiency, speed, and data transmission efficiency over current solutions. Leveraging a combination of frequency-selective (FS) digital transmission with walsh codes (WCs) or quadrature amplitude modulation (QAM), and incorporating one-round encryption and decryption modules, the system complies with the IEEE 802.15.6 standard, ensuring broad compatibility. Specifically, the QAM-based SD-HBC TR system exhibits a 4% reduction in chip area, a 7.6% increase in operating frequency, a 3.4% decrease in power consumption, a 27.5% reduction in latency, and improvements of 33% in throughput and 35.5% in efficiency. Importantly, it achieves a bit error rate (BER) of up to 10-8 , demonstrating high reliability across communication methods. This research significantly advances secure communication in WBANs, offering a promising approach for enhancing the reliability, efficiency, and security of healthcare monitoring technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.