Improving agricultural productivity is essential due to rapid population growth, making early detection of crop diseases crucial. Although deep learning shows promise in smart agriculture, practical applications for identifying wheat diseases in complex backgrounds are limited. In this paper, we propose CropNet, a hybrid method that utilizes Red, Green, and Blue (RGB) imaging and a transfer learning approach combined with shallow convolutional neural networks (CNN) for further feature refinement. To develop our customized model, we conducted an extensive search for the optimal deep learning architecture. Our approach involves freezing the pre-trained model for feature extraction and adding a custom trainable CNN layer. Unlike traditional transfer learning, which typically uses trainable dense layers, our method integrates a trainable CNN, deepening the architecture. We argue that pre-trained features in transfer learning are better suited for a custom shallow CNN followed by a fully connected layer, rather than being fed directly into fully connected layers. We tested various architectures for pre-trained models including EfficientNetB0 and B2, DenseNet, ResNet50, MobileNetV2, MobileNetV3-Small, and Inceptionv3. Our approach combines the strengths of pre-trained models with the flexibility of custom architecture design, offering efficiency, effective feature extraction, customization options, reduced overfitting, and differential learning rates. It distinguishes itself from classical transfer learning techniques, which typically fine-tune the entire pre-trained network. Our aim is to provide a lightweight model suitable for resource-constrained environments, capable of delivering outstanding results. CropNet achieved 99.80% accuracy in wheat disease detection with reduced training time and computational cost. This efficient performance makes CropNet promising for practical implementation in resource-constrained agricultural settings, benefiting farmers and enhancing production.