Abstract

This paper introduces a new digital integration that combines edge diffractometry with convolutional neural networks (CNN) for via metrology and inspection. The beam propagation method (BMP) was used to simulate the interferogram generated by edge diffractometry to characterize via edge roughness (VER). A comprehensive database was established to link different fringe patterns to VER for CNN training. The well-trained CNN-based methodology provided a fast and accurate assessment of VER, with a root mean squared error (RMSE) of 0.073 and an average mean absolute deviation ratio (MADR) of 2.274%. In addition, the proposed digital approach was compared to the multilayer perceptron machine (MLP) in terms of computational efficiency and predictive accuracy. The proposed digital integration greatly improved the accuracy and speed of VER measurement, characterization, and quantification, potentially enhancing device yield and reliability. The successful application of this digital approach could open up possibilities for various types of via or pattern metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call