The collapse of open-pit coal mine slopes is a kind of severe geological hazard that may cause resource waste, economic loss, and casualties. On 22 February 2023, a large-scale collapse occurred at the Xinjing Open-Pit Mine in Inner Mongolia, China, leading to the loss of 53 lives. Thus, monitoring of the slope stability is important for preventing similar potential damage. It is difficult to fully obtain the temporal and spatial information of the whole mining area using conventional ground monitoring technologies. Therefore, in this study, multi-source remote sensing methods, combined with local geological conditions, are employed to monitor the open-pit mine and analyze the causes of the accident. Firstly, based on GF-2 data, remote sensing interpretation methods are used to locate and analyze the collapse area. The results indicate that high-resolution remote sensing can delineate the collapse boundary, supporting the post-disaster rescue. Subsequently, multi-temporal Radarsat-2 and Sentinel-1A satellite data, covering the period from mining to collapse, are integrated with D-InSAR and DS-InSAR technologies to monitor the deformation of both the collapse areas and the potential risk to dump slopes. The D-InSAR result suggests that high-intensity open-pit mining may be the dominant factor affecting deformation. Furthermore, the boundary between the collapse trailing edge and the non-collapse area could be found in the DS-InSAR result. Moreover, various data sources, including DEM and geological data, are combined to analyze the causes and trends of the deformation. The results suggest that the dump slopes are stable. Meanwhile, the deformation trends of the collapse slope indicate that there may be faults or joint surfaces of the collapse trailing edge boundary. The slope angle exceeding the designed value during the mining is the main cause of the collapse. In addition, the thawing of soil moisture caused by the increase in temperature and the reduction in the mechanical properties of the rock and soil due to underground voids and coal fires also contributed to the accident. This study demonstrates that multi-source remote sensing technologies can quickly and accurately identify potential high-risk areas, which is of great significance for pre-disaster warning and post-disaster rescue.